A Bambara Tonalization System for Word Sense Disambiguation Using Differential Coding, Segmentation and Edit Operation Filtering

Abstract : In many languages such as Bambara or Arabic, tone markers (diacritics) may be written but are actually often omitted. NLP applications are confronted to ambiguities and subsequent difficulties when processing texts. To circumvent this problem , tonalization may be used, as a word sense disambiguation task, relying on context to add diacritics that partially disam-biguate words as well as senses. In this paper , we describe our implementation of a Bambara tonalizer that adds tone markers using machine learning (CRFs). To make our tool efficient, we used differential coding , word segmentation and edit operation filtering. We describe our approach that allows tractable machine learning and improves accuracy: our model may be learned within minutes on a 358K-word corpus and reaches 92.3% accuracy.
Type de document :
Communication dans un congrès
The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017), Nov 2017, Taipei, Taiwan. Proceedings of the The 8th International Joint Conference on Natural Language Processing, pp.694 - 703, 2017
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01685393
Contributeur : Luigi (yu-Cheng) Liu <>
Soumis le : mardi 16 janvier 2018 - 13:14:25
Dernière modification le : mercredi 24 janvier 2018 - 01:15:49
Document(s) archivé(s) le : dimanche 6 mai 2018 - 06:34:45

Fichier

I17-1070.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01685393, version 1

Collections

Citation

Yu-Cheng Liu, Damien Nouvel. A Bambara Tonalization System for Word Sense Disambiguation Using Differential Coding, Segmentation and Edit Operation Filtering. The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017), Nov 2017, Taipei, Taiwan. Proceedings of the The 8th International Joint Conference on Natural Language Processing, pp.694 - 703, 2017. 〈hal-01685393〉

Partager

Métriques

Consultations de la notice

59

Téléchargements de fichiers

31